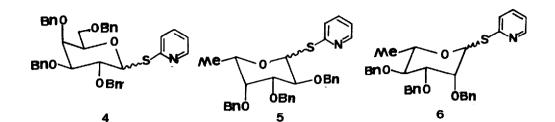
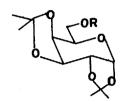
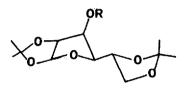
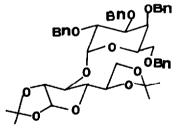

A MILD GENERAL METHOD FOR THE SYNTHESIS OF CLINKED DISACCHARIDES

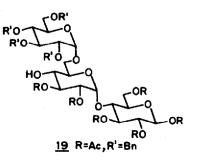
G. Venugopal Reddy, Vinayak R. Kulkarni and Hari Babu Mereyala* National Chemical Laboratory, Pune 411008, India

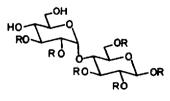

Stereoselective \propto -glycosylations may be achieved using stable 2-pyridyl thioglycosides (anomeric mixture) having a non-participating 2-substituent as glycosyl donor and methyl iodide as an activator.


 \propto -Linked disaccharides are of paramount importance as they are constituents of many biologically active natural prdoucts¹. As a consequence, much effort is currently directed to the efficient and stereocontrolled synthesis of such disaccharides². Present synthetic methods for construction of such molecules, inspite of some stimulating approaches³⁻⁹ however, leave a considerable margin for improvement in terms of formation of unstable glycosyl halide (classical glycosyl donor), acidic reaction media, toxic reagents, efficiency, generality and stereoselectivity. We report herein, a mild methodology that utilizes the stable, readily available anomeric mixture (\approx and β) of 2-pyridyl thioglycosides¹⁰ 1, 4-6 with a non-participating 2-substituent as glycosyl donor and methyl iodide as an activator in presence of glycosyl acceptors 2, 7, 12, r,t give rise to \approx -linked disaccharides. The potential of this efficacious, powerful technology is amply demonstrated herein, through the practical synthesis of ten disaccharides and a trisaccharide (Table 1). 2-Pyridyl thioglycosides have earlier been used as glycosyl donors and activation by heavy metal salts did not yield results to be of general application for widespread use in oligosaccharide synthesis¹¹.


In a typical procedure, 2-pyridyl 2,3,4,6-tetra-O-benzyl-1-thio- $\ll \beta$ -D-glucopyranoside 1¹⁰ (1.0 mmol) ($\ll:\beta$ anomers 2:3 ratio) was reacted with 4-hydroxyl group of the glucopyranoside 2¹² (1.1 mmol), which is known to resist⁴ glycosidation under halide ion catalysed conditions³, in dry methylenechloride (10 ml, having 3% methyl iodide) in presence of 4-Å molecular sieves at 50°C for three days. After work up and purification (silica gel column), methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- \ll -D-glycopyranosyl)- \bigstar -D-glucopyranoside was isolated as a syrup 3, (82%), $[\varkappa]_{O}^{20}$ +48° (c, 1.0, CHCl₃)⁴, (Scheme 1).


Scheme-I


- 7 R = H
- R = 2,3,4,6-tetra-O-benzyl-&-D-glucopyranosyl 8
- 9 R = 2,3,4,6-tetra-O-benzyl-*-D-galactopyranosyl 14 R = 2,3,4,6-tetra-O-benzyl-*-D-galactopyranosyl
- 10 R = 2,3,4-tri-O-benzyl -L-fucopyranosyl
- 11 R = 2,3,4-tri-O-benzyl-W-L-rhamnopyranosyl
- 12 R = H
- 13 R = 2,3,4,6-tetra-O-benzyl-%-D-glucopyranosyl
- 15 R = 2,3,4-tri-O-benzyl-VL-fucopyranosyl



16

18 R = Ac

The versatility and usefulness of this technology was tested in a number of demanding situations. Thus, <u>D</u>-gluco, <u>D</u>-galacto- and <u>L</u>-fucosylations have been performed with α -diastereo-selectivity, by reaction of their corresponding pyridyl thioglycosides **l**, **4** and **5** with several glycosyl acceptors (Table 1).

Entry	Glycosyl ^a		Protected	Yield	[ex] Deg. ^b	
	Donor	Acceptor	Disaccharide (m.p.)	%	Observed	Lit. (Ref.)
i	1	7	8 m	87	+10 ^{c,i}	+10.1 (3)
ii	1	12	13 (91°C) o	56	+46 ^{c,i}	+46 (4)
iii	4	7	9 m	81	+5.1 f,k	+2 (13)
iv	4	r	16 (120ºC) p	67	+37 g,j	+36.8 (3)
v	4	12	14 m	62	+32.7 d,l	+33 (4)
vi	5	7	10 (115-116⁰C) q	71	-116 . 5 c,j	-117 (3)
vii	5	12	15 m	59	-96.8 c,j	-97 (3)
viii	6	7	11 m	78	-47 e,h	S
ix	6	t	17 m	72	-23.9 e,h	s

Table 1: Glycosidation Via Pyridyl thioglycoside Method

^aReaction time for primary alcohols as acceptors (2 days) and secondary alcohols (3 days). ^bIn chloroform. ^cc 2.0. ^dc 1.1. ^ec 1.0. ^fc 0.9. ^gc 0.8. ^h27. ⁱ24. ^j25. ^k22. ^l20. ^mSyrup. ^oLit. mp 90-91°C. ^pLit. mp 120-121°C. ^qLit. mp 115-116°C. ^r1,2:4,6-di-<u>O</u>-isopropylidene-<u>D</u>-galactofuranose. ^sOn debenzylation (Pd/H₂) identical with the reported compound ref.14. ^tMethyl*x*-2,3-<u>O</u>-isopropylidene-<u>L</u>-rhamnoside.

Furthermore, 2-pyridyl thiorhamnoside 6 also exhibited \propto -selectivity (entry viii, ix), synthesis of such \propto -linked rhamnobioses 11 and 17 has earlier been possible only by neighbouring group assisted orthoester procedure. Panose 19¹⁵ a trisaccharide, which has been earlier isolated from acid hydrolyzates of amylopectin, glycogen and pullulan has been synthesized by condensation of 18 (20 h) with 1 in 62% yield $[\Re_{20}^{20} +51.3^{\circ}$ (c 2.0, CHCl₃)^{15,16}.

These results revealed that preparatively satisfactory ∞ -glycosidations can be performed under mild conditions. The prospects of affecting macrolactonisation and esterification are also evident from this methodology. Application of this methodology for the synthesis of ∞ -linked 2-deoxydisaccharides is reported in the following paper.

Acknowledgement:

GVR is indebted to the Council of Scientific & Industrial Research, New Delhi for financial support.

References and Notes:

- A.F. Bochkov and C.E. Zaikov, "Chemistry of the O-Glycosidic Bond: Formation and Cleavage" Pergamon, Oxford, 1979.
- (a) H. Paulsen, Chem. Soc. Rev., 15 (1984).
 (b) R.R. Schmidt, Angew. Chem., Int. Ed. Engl., 25, 212 (1986).
 (c) P. Fugedi, P.J. Garegg, H. Lonn and T. Norberg, Glycoconjugate. J., 4, 97 (1987).
- 3. R.U. Lemieux, K.B. Hendricks, R.V. Stick and K. James, J. Amer. Chem. Soc., 97, 4056 (1975).
- 4. J.R. Pougny, J.C. Jacquient, N. Nassr, D. Duchet, M.L. Milat, and P. Sinay, ibid. 99, 6762, (1977).
- 5. T. Mukaiyama, T. Nakatsuka, and S. Shoda, Chem. Lett., 487 (1979).
- 6. K.C. Nicolaou, S.P. Seitz and D.P. Papahatjis, J.Am. Chem. Soc., 105, 2430 (1983).
- 7. K.C. Nicolaou, R.E. Dolle, D.P. Papahatjis and J.L. Randall, ibid. 106, 4189 (1984).
- 8. B. Fraser-Reid, P. Konradsson, D.R. Mootoo and U.Udodyong, J. Chem. Soc., Chem. Commun., 823 (1988).
- 9. F. Andersson, P. Fugedi, P. Garegg and M. Nashed, Tetrahedron Lett., 3919 (1986).
- 10. Prepared essentially as anomeric mixture (Ca. 2/3,4/3) on reaction of (Py.s)₂/n Bu₃P/CH₂Cl₂/ RT/2 h. with the corresponding 2,3,4,6- or 2,3,4-<u>O</u>-benzylated pyranosides.
- 11. S. Hanessian, C. Bacquet and N. Lehong, Carbohydr. Res., 80, C17 (1980).
- 12. J.M. Kuster and I. Dyong, Justus Liebigs Ann. Chem., 12, 2179 (1975).
- 13. P.J. Garegg, C. Ortega and B. Samuelsson, Acta Chem. Scand. B, 35, 631 (1981).
- 14. L.V. Backinowsky, Y.E. Tsvetka, N.F. Balan and N.K. Kochetkov, Carbohydr. Res., 85, 209 (1980).
- 15. K. Takeo and K. Shinmitsu, Carbohydr. Res., 133, 135 (1984).
- 16. All the compounds have been characterised by comparison of ¹H-n.m.r., ¹³C-n.m.r. and optical rotations. Satisfactory analytical data have been obtained for new compounds.

[¶] NCL Communication No. 4687

(Received in UK 8 May 1989)